EFFICIENCY AND ENVIRONMENTAL IMPACTS OF FIREBREAKS IN FOREST FIRE MITIGATION: A REVIEW
DOI:
https://doi.org/10.56238/revgeov16n4-086Keywords:
Fire Prevention, Containment Structures, Vegetative Barriers, Ecosystem ServicesAbstract
Wildfires represent a growing global threat, intensified by anthropogenic actions and climate change. In this context, firebreaks have emerged as relevant strategies for fire prevention and management, functioning as physical barriers capable of interrupting or reducing fire spread. This study conducted a systematic review, following the PRISMA methodology, of scientific articles published up to December 2024, aiming to identify the characteristics, effectiveness, and ecological and environmental impacts associated with the implementation of firebreaks under real fire conditions. The analysis revealed two main types: conventional firebreaks and green firebreaks. Traditional firebreaks involve the partial or complete removal of surface vegetation to reduce fuel loads and are effective under low-intensity fire scenarios and favorable weather conditions. However, they require ongoing maintenance and may exacerbate soil degradation processes, such as erosion and the proliferation of invasive species. Green firebreaks, in contrast, are composed of plant species with low flammability, high moisture content, and ecological plasticity, arranged in multistructural formations that limit fire spread both horizontally and vertically. Given the increasing frequency and severity of wildfires, understanding the ecological implications and functional efficiency of each firebreak type is essential to guide decisions regarding their implementation across diverse socio-environmental contexts, contributing to more sustainable and territorially adapted fire prevention strategies.
Downloads
References
AGEE, J.K.; BAHRO, B.; FINNEY, M.A.; OMI, P.N.; SAPSIS, D.B.; SKINNER, C.N.; VAN WAGTENDONK, J.W.; WEATHERSPOON, C.P. The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management, v. 127, 55-66, 2000. https://doi.org/10.1016/S0378-1127(99)00116-4
ARANGO, E.; JIMÉNEZ, P.; NOGAL, M.; SOUSA, H.S.; STEWART, M.G.; MATOS, J.C. Enhancing infrastructure resilience in wildfire management to face extreme events: Insights from the Iberian Peninsula. Climate Risk Management, v. 44, 100595, 2024.https://doi.org/10.1016/j.crm.2024.100595
AVCI, M.C.; AVCI, M.; BATTARRA, M.; ERDOĞAN, G. The wildfire suppression problem with multiple types of resources. European Journal of Operational Research, v. 316, 488-502, , 2024. https://doi.org/10.1016/j.ejor.2024.03.005
BANKS, S.C.; DUJARDIN, M.; MCBURNEY, L.; BLAIR, D.; BARKER, M.; LINDENMAYER, D.B. Starting points for small mammal population recovery after wildfire: recolonisation or residual populations? Oikos, v. 120, 26-37, 2011. https://doi.org/10.1111/j.1600-0706.2010.18765.x
BAROVIK, D.; TARANCHUK, V. Surface Forest Fires Modelling: Temperature and Oxygen Dynamics near Fuelbreaks. Baltic Journal Modern Computing, v. 11 (2), 226-240, 2023.
https://doi.org/10.22364/bjmc.2023.11.2.01
BERGERON, Y.; GAUTHIER, S.; FLANNIGAN, M.; KAFKA, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology, v. 85 (7), 1916-1932, 2004. https://doi.org/10.1890/02-0716
CARRASCO, J.; MAHALUF, R.; LISÓN, F.; PAIS, C.; MIRANDA, M.; BARRA, F.; PALACIOS, D.; WEINTRAUB, A. A firebreak placement model for optimizing biodiversity protection at landscape scale. Journal of Environmental Management, v. 342, 118087, 2023.
https://doi.org/10.1016/j.jenvman.2023.118087
CUI, X.; ALAMA, M.D.A.; PERRY, G.L.W.; PATERSON, A.M.; WYSE, S.V.; CURRAN, T.J. Green firebreaks as a management tool for wildfires: Lessons from China. Journal of Environmental Management, v. 233, 329-336, 2019. https://doi.org/10.1016/j.jenvman.2018.12.043
CURRAN, T.J.; PERRY, G.L.W.; WYSE, S.V.; ALAM, M.A. Managing Fire and Biodiversity in the Wildland-Urban Interface: A Role for Green Firebreaks. Fire, v. 1, 3, 2018.
https://doi:10.3390/fire1010003
DEMANGE, M.; DI FONSO, A.; DI STEFANO, G.; VITTORINI, P. A graph theoretical approach to the firebreak locating problem. Theoretical Computer Science, v. 914, 47-72, 2022.
https://doi.org/10.1016/j.tcs.2022.02.012
EASTAUGH, C.S.; MOLINA, D.M. Forest road and fuelbreak siting with respect to reference fire intensities. Forest Systems, v. 21 (1), 153-161, , 2012. http://dx.doi.org/10.5424/fs/2112211-12232
FERNANDEZ, P.; RODRIGUEZ, A.; GUTIERREZ, D.; JORDANO, D.; FERNANDEZ-HAEGER, R. Firebreaks as a barrier to movement: the case of a butterfly in a Mediterranean landscape. Journal of Insect Conservation, v. 23, 843-856, 2019. https://doi.org/10.1007/s10841-019-00175-5
FRANGIEH, N.; ACCARY, G.; ROSSI, J.L.; MORVAN, D.; MERADJI, S.; MARCELLI, T.; CHATELON, F.J. Fuelbreak effectiveness against wind-driven and plume-dominated fires: A 3D numerical study. Fire Safety Journal, v. 124, 103383, 2021.
https://doi.org/10.1016/j.firesaf.2021.103383
FROST, S.M.; ALEXANDER, M.E.; JENKINS, M.J. The Application of Fire Behavior Modeling to Fuel Treatment Assessments at Army Garrison Camp Williams, Utah. Fire, v. 5, 78, 2022.
https://doi.org/10.3390/fire5030078
GATTI, L.V.; BASSO, L.S.; MILLER, J.B.; GLOOR, M.; DOMINGUES, L.G.; CASSOL, H.L.G.; TEJADA, G.; ARAGÃO, L.E.O.C.; NOBRE, C.; PETERS, W.; MARANI, L.; ARAI, E.; SANCHES, A.H.; CORREA, S.M.; ANDERSON, L.; RANDOW, C.V.; CORREIA, C.S.C.; CRISPIM, S.; NEVES, R.A.L. Amazonia as a carbon source linked to deforestation and climate change. Nature, v. 595, 388-407, 2021.
https://doi.org/10.1038/s41586-021-03629-6
GRANSTRÖM, A.; NIKLASSON, M. Potentials and limitations for human control over historic fire regimes in the boreal forest. Philosophical Transactions of the Royal Society B, v. 363, 2351-2356, 2008. https://doi.org/10.1098/rstb.2007.2205
HÄDRICH, T.; BANUTI, D.T.; PAŁUBICKI, W.; PIRK, S.; MICHELS, D.L. Fire in Paradise: Mesoscale Simulation of Wildfires. ACM Transactions on Graphics, v. 40, 163, 2021. https://doi.org/10.1145/3450626.3459954
KAZATO, M.; SOYOLLHAM, B. Forest-steppe fires as moving disasters in the Mongolia-Russian borderland. Journal of Contemporary East Asia Studies, v. 11 (1), 22-45, 2022. https://doi.org/10.1080/24761028.2022.2113493
KENNEDY, M.C.; JOHNSON, M.C.; FALLON, K.; MAYER, D. How big is enough? Vegetation structure impacts effective fuel treatment width and forest resiliency. Ecosphere, v. 10 (2), e02573, 2019. https://doi.org/10.1002/ecs2.2573
KHAN, N.; MOINUDDIN, K. The Role of Heat Flux in an Idealised Firebreak Built in Surface and Crown Fires. Atmosphere, v. 12 (11), 1395, 2021. https://doi.org/10.3390/atmos12111395
KISHORE, B.S.P.C.; KUMAR, A.; SAIKIA, P.; LELE, N.; SRIVASTAVA, P.; PULLA, S.; SURESH, H.; BHATTARCHARYA, B.K.; KHAN, M.L.; SUKUMAR, R. Mapping of understorey invasive plant species clusters of Lantana camara and Chromolaena odorata using airborne hyperspectral remote sensing. Advances in Space Research, v. 73, 1379-1396, 2024. https://doi.org/10.1016/j.asr.2022.12.026
KOUASSI, J.; WANDAN, N.; MBOW, C. Exploring Wildfire Occurrence: Local Farmers' Perceptions and Adaptation Strategies in Central Côte d'Ivoire, West Africa. Journal of Sustainable Forestry, v. 41 (2), 173-192, 2020. https://doi.org/10.1080/10549811.2020.1845744
MARSHALL, E.; HOLYLAND, B.; PARKINS, K.; RAULINGS, E.; GOOD, M.K.; SWAN, M.; BENNETT, L.T.; PENMAN, T.D. Can green firebreaks help balance biodiversity, carbon storage and wildfire risk? Journal of Environmental Management, v. 369, 122183, 2024.
https://doi.org/10.1016/j.jenvman.2024.122183
MARTINS, P.I.; BELÉM, L.B.C.; PELUSO, L.M.; SZABO, J.K.; TRINDADE, W.C.F.; POTT, A.; DAMASCENO JUNIOR, G.A.; JIMENEZ, D.; MARQUES, R.; PETERSON, A.T.; LIBONATI, R.; GARCIA, L.C. Fire-sensitive and threatened plants in the Upper Paraguay River Basin, Brazil: Identifying priority areas for Integrated Fire Management and ecological restoration. Ecological Engineering, v. 209, 107411, 2024. https://doi.org/10.1016/j.ecoleng.2024.107411
MCGRANAHAN, D.A.; WONKKA, C.L. Fuel properties of effective Greenstrips in Simulated Cheatgrass Fires. Environmental Management, v. 70, 319-328, 2022. https://doi.org/10.1007/s00267-022-01659-y
MILLER, D. Controlling Annual Bromes: Using rangeland "greenstrips" to create natural fire breaks. Rangelands, v. 28 (2), 22-25, 2006. https://doi.org/10.2111/1551-501X(2006)28.2[22:CAB]2.0.CO;2
MURRAY, B.R.; BROWN, C.; MURRAY, M.L.; KRIX, D.W.; MARTIN, L.J.; HAWTHORNE, T.; WALLACE, M.I.; POTVIN, S.A.; WEBB, J.K. An Integrated Approach to Identify Low-Flammability Plant Species for Green Firebreaks. Fire, v. 3 (9), 2020. https://doi:10.3390/fire3020009
N'DRI, A.B.; KPRÉ, A.J.N.; DOUMBIA, A. Managing fires in a woody encroachment context: Fine fuel load does not change across fire seasons in a Guinean savanna (West Africa) panel. Journal of Environmental Management, v. 371, 123236, 2024.
https://doi.org/10.1016/j.jenvman.2024.123236
NIELSEN, S.E.; DELANCEY, E.R.; REINHARDT, K.; PARISIEN, M.A.. Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada. Forests, v. 7, 265, 2016.
https://doi.org/10.3390/f7110265
OLIVEIRA, A.S.; SILVA, J.S.; GUIOMAR, N.; FERNANDES, P.; NEREU, M.; GASPAR, J.; LOPES, R.F.R.; RODRIGUES, J.P.C. The effect of broadleaf forests in wildfire mitigation in the WUI – A simulation study. International Journal of Disaster Risk Reduction, v. 93, 103788, 2023. https://doi.org/10.1016/j.ijdrr.2023.103788
PAGADALA, T.; ALAM, M.A.; MAXWELL, T.M.R.; CURRAN, T.J. Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes. Science of the Total Environment, v. 906, 167489, 2024.
https://doi.org/10.1016/j.scitotenv.2023.167489
PETERSEN, J.E.; KAPUR, S.; GKANTONAS, S.; MASTORAKOS, E.; GIUSTI, A. Modelling and optimisation of extinction actions for wildfire suppression. Combustion Science and Technology, v. 195 (14), 3584-3595, 2023. https://doi.org/10.1080/00102202.2023.2246195
PRICE, O.F.; EDWARDS, A.C.; RUSSELL-SMITH, J. Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia. International Journal of Wildland Fire, v. 16, 295-307, 2007. https://doi.org/10.1071/WF06039
RUIZ-MIRAZO, J.; ROBLES, A.B.; GONZÁLEZ-REBOLLAR, J.L. Two-year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agriculture, Ecosystems and Environment, v. 141, 13-22, 2011. https://doi.org/10.1016/j.agee.2011.02.002
RUIZ-MIRAZO, J.; ROBLES, A.B. Impact of targeted sheep grazing on herbage and holm oak saplings in a silvopastoral wildfire prevention system in south-eastern Spain. Agroforestry Systems, v. 86, 477-491, 2012. https://doi.org/10.1007/s10457-012-9510-z
RUIZ-MIRAZO, J.; GONZÁLEZ-REBOLLAR, J.L. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention. Forest Systems, v. 22 (1), 47-57, 2013. http://dx.doi.org/10.5424/fs/2013221-02500
SANTAMARTA-CEREZAL, J.C.; GUZMÁN, J.; NERIS, J.; ARRAIZA, M.P.; IORA, F. Forest Hydrology, Soil Conservation and Green Barriers in Canary Islands. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 40 (2), 09-13, 2012. https://oa.upm.es/14179/1/INVE_MEM_2012_123066.pdf
SEIPEL, T.; REW, L.J.; TAYLOR, K.T.; MAXWELL, B.D.; LEHNHOFF, E.A. Disturbance type influences plant community resilience and resistance to Bromus tectorum invasion in the sagebrush steppe. Applied Vegetation Science, v. 21 (3), 1-10, 2018. https://doi.org/10.1111/avsc.12370
SHMUEL, A.; HEIFETZ, E. A Dijkstra-Based Approach to Fuelbreak Planning. Fire, v. 6 (8), 295, 2023 https://doi.org/10.3390/fire6080295
SILVÉRIO, D.V.; OLIVEIRA, R.S.; FLORES, B.M.; BRANDO, P.M.; ALMADA, H.K.; FURTADO, M.T.; HECKENBERGER, M.; ONO, K.Y.; MACEDO, M.N. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environmental Research Letters, v. 17, 045012, 2022. https://doi.org/10.1088/1748-9326/ac5713
STUBBENDIECK, J.; TUNNELL, S.J. Seventy-Eight Years of Vegetation Dynamics in a Sandhills Grassland. Natural Areas Journal, v. 28 (1), 58-65, 2008.
https://doi.org/10.3375/0885-8608(2008)28[58:SYOVDI]2.0.CO;2
SUFFLING, R.; GRANT, A.; FEICK, R. Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas. Forest Ecology and Management, v. 256, 1815-1824, 2008. https://doi.org/10.1016/j.foreco.2008.06.043
THOMAS, G.; ROSALIE, V.; OLIVIER, C.; MARIA, D.G.A.; ANTONIO, L.P. Modelling forest fire and firebreak scenarios in a mediterranean mountainous catchment: Impacts on sediment loads. Journal of Environmental Management, v. 289, 112497, 2021.
https://doi.org/10.1016/j.jenvman.2021.112497
VELAMAZÁN, M.; MIGUEL, A.S.; ESCRIBANO, R.; PEREA, R. Use of firebreaks and artificial supply points by wild ungulates: Effects on fuel load and woody vegetation along a distance gradient. Forest Ecology and Management, v. 427, 114123, 2018. https://doi.org/10.1016/j.foreco.2018.05.061
WANG, H.; FINNEY, M.A.; SONG, Z.; WANG, Z.; LI, X.. Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. Forest Ecology and Management, v. 495, 119376, 2021. https://doi.org/10.1016/j.foreco.2021.119376
WEN, P.; ZHU, D.; WANG, L.; WU, F.; BAO, L.; WANG, T.; GE, J.; WANG, H. Role of forest fuelbreaks for browsers: Implications from dietary pattern and food resources for sika (Cervus nippon). Forest Ecology and Management, v. 571, 122241, 2024.
https://doi.org/10.1016/j.foreco.2024.122241
ZIEGLER, J.P.; HOFFMAN, C.M.; COLLINS, B.M.; LONG, J.W.; DAGLEY, C.M.; MELL, W. Structure Following Conifer Removal in Aspen-Conifer Forests in the Lake Tahoe Basin, USA. Fire, v. 3, 51, 2020. https://doi:10.3390/fire3030051
ZONG, X.; TIAN, X.; WANG, X. An optimal firebreak design for the boreal forest of China. Science of the Total Environment, v. 781, 146822, 2021.
https://doi.org/10.1016/j.scitotenv.2021.146822
ZONG, X.; TIAN, X.; FANG, L. Assessing wildfire risk and mitigation strategies in Qipanshan, China. International Journal of Disaster Risk Reduction, v. 80,103237, 2022.
https://doi.org/10.1016/j.ijdrr.2022.103237
ZONG, X.; TIAN, X.; WANG, X. The role of fuel treatments in mitigating wildfire risk. Landscape and Urban Planning, v. 242, 104957, 2024.