PROBIOTIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATED FROM WILD PASSION FRUIT (PASSIFLORA CINCINNATA MAST.)

Authors

  • Bruna Peregrino de Souza
  • Beatriz Paiva dos Santos
  • Ingrid Carvalho do Nascimento
  • Taides Tavares dos Santos
  • Fabricio Luiz Tulini
  • Aurizangela Oliveira de Sousa

DOI:

https://doi.org/10.56238/revgeov16n4-088

Keywords:

Cerrado, Native Fruits, Spontaneous Fermentation, Functional Strains

Abstract

The research aims to find alternatives to traditional sources of probiotics, such as dairy products, and to fill the information gap on the microbiota of native fruits of the Cerrado, especially in Bahia. The main objective of the study was to isolate, characterize, and identify the LAB strains present in the wild passion fruit (Passiflora cincinnata Mast), assessing their viability as probiotics in the food industry and their compliance with the safety criteria established by Anvisa (Brazilian Health Regulatory Agency). To this end, flower and leaf samples were collected for species identification, as well as samples from fruits subjected to spontaneous fermentation. The isolates were characterized by catalase, Gram staining, coagulase, gelatinase, DNase, and low pH resistance tests, and identified through 16S ribosomal gene sequencing. Additionally, antibiotic susceptibility and antimicrobial activity tests were performed. A total of 590 isolates were obtained, of which 6 were Gram-positive and catalase-negative. Of these, three tested negative for coagulase, gelatinase, and DNase. Among them, one strain demonstrated significant resistance to gastric acidity, sensitivity to three antibiotics, and significant inhibition against four distinct pathogens. Molecular analysis identified the genus Enterococcus, with similarity to the species E. faecium. The results indicate that the isolated wild passion fruit strain has promising probiotic potential, highlighting the importance of native Cerrado fruits as alternative sources of LAB and demonstrating the biotechnological and sustainable potential of this biome. Additional trials are needed to confirm its health benefits.

Downloads

Download data is not yet available.

References

ABRANTES, J. A; NOGUEIRA, J. M. R. Resistência bacteriana aos antimicrobianos: uma revisão das principais espécies envolvidas em processos infecciosos. RBAC. 2021;53(3):219-223. DOI: 10.21877/2448-3877.20210215.

AGUIAR, F. S. Avaliação da fermentação espontânea dos frutos de euterpe oleracea durante o período pós-colheita e suas possíveis implicações sobre a atração de triatomíneos. 86f. Dissertação (Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal do Pará, Belém, 2010.

AMARAL, D. M. F. Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J Dairy Sci. 2017 Feb;100(2):933-949. DOI: 10.3168/jds.2016-11513.

AGUILLÓN-OSMA, J et al. Impact of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of bioactive compounds from Passion fruit (Passiflora edulis) leaves and juice extracts. J Food Biochem. 2019 Jul;43(7):e12879. DOI: 10.1111/jfbc.12879.

ANASTÁCIO, L. M et al. Microrganismos do fruto cafeeiro. Luzerna: Editora Ad Verbum, 2020. 23p.

ANVISA. Cartilha sobre Boas Práticas para Serviços de Alimentação. Resolução-RDC nº 216/2004. 3ªed. Brasília, 2004.

ARAÚJO, A. J. G et al. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. Braz. J. Biol., 2021, v. 81, n. 4 pp.954-961. DOI: https://doi.org/10.1590/1519-6984.232503

ASLIM, B et al. Determination of the bacteriocin like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT, v. 38, p. 691-694, 2005.

BARNES, A. M. T et al. Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence. 2017 Apr 3;8(3):282-296. DOI: 10.1080/21505594.2016.1208890.

BEN, S. L et al. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J Sci Food Agric. 2016 Mar 30;96(5):1627-33. DOI: 10.1002/jsfa.7264.

BRASIL. Resolução da Diretoria Colegiada – RDC nº 241, de 26 de julho de 2018. Dispõe sobre os requisitos para comprovação da segurança e dos benefícios à saúde dos probióticos para uso em alimentos. Diário Oficial da União. Brasília, DF, 26 jul. 2018.

BRASIL. Portaria nº 162, de 12 de março de 2021. Dispõe sobre as diretrizes e os procedimentos para melhoria da qualidade regulatória na Agência Nacional de Vigilância Sanitária (Anvisa) Guia para instrução processual de petição de avaliação de probióticos para uso em alimentos. Diário Oficial da União. Brasília, DF, 12 mar. 2021.

BRITO, Gabriela Fachine. Seleção e microencapsulação de bactérias ácido-láticas potencialmente probióticas obtidas de frutos do bacupari (Rheedia gardneriana). 72f. Dissertação (Mestre em Ciência e Tecnologia de Alimentos) – Universidade Federal do Tocantins, Palmas. 2021.

COSTA, G. N et al. Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”Semina: Ciências Agrárias, Londrina, v. 33, n. 5, p. 1839-1846, set./out. 2012.

CHARTERIS, W. P et al. Antibiotic susceptibility of potential probiotic Lactobacillus species. J Food Prot.,1998;61:1636–1643.

CHUN, J et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 2007 Oct;57(Pt 10):2259-2261. DOI: 10.1099/ijs.0.64915-0. PMID: 17911292.

CLSI. Antibiograma – Interpretação das zonas de inibição e concentração inibitória mínima. 2022. Disponível em:< https://www.dme.ind.br/wp-content/uploads/Bula-de-Bancada-CLSI-2022.pdf>. Acesso em: 28 de junho de 2024.

DUC, L. H et al. Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol. 2004 Apr;70(4):2161-71. DOI: 10.1128/AEM.70.4.2161-2171.2004. PMID: 15066809; PMCID: PMC383048.

EMBRAPA. Caracterização físico-química da polpa de maracujá do mato. Petrolina, PE: Embrapa Semi-Árido, 2009. 3p.

EMBRAPA. Microbiota lática de queijos artesanais. Laura Maria Bruno, Juliane Döering Gasparin Carvalho. Fortaleza: Embrapa Agroindústria Tropical, 2009. 30p.

EMBRAPA. Manual de Curadores de Germoplasma – Micro-organismos: Bactérias Ácido-Láticas. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2011. 15p.

FAO / WHO. Orientações para a avaliação de probióticos na alimentação. London, 2002. 11 p.

FDA. 2019. Generally Recognized as Safe (GRAS). Disponível em:< https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras>. Acesso em: 17 de ago. 2024.

FRANZ, C. M et al. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011 Dec 2;151(2):125-40. DOI: 10.1016/j.ijfoodmicro.2011.08.014.

GIRAFFA, G. Functionality of enterococci in dairy products. International Journal of Food Microbiology, v. 88, n. 2/3, p. 215-222, 2003.

GOUVEIA, C. K. Isolamento e identificação de bactérias de cultivo heterotrófico de litopenaeus vannamei (boone, 1931): avaliação da atividade de enzimas proteolíticas e amilolíticas. 82f. Dissertação (Pós-graduação em Ciências Biológicas) - Universidade Federal de Pernambuco, Recife. 2012.

GORDON, D; ABAJIAN, C; GREEN, P. Consed: a graphical tool for sequence finishing. Genome Res. 1998 Mar;8(3):195-202. DOI: 10.1101/gr.8.3.195.

HUANG, S et al. Intestinal Mucosal Immunity-Mediated Modulation of the Gut Microbiome by Oral Delivery of Enterococcus faecium Against Salmonella Enteritidis Pathogenesis in a Laying Hen Model. Front Immunol. 2022 Mar 15;13:853954. DOI: 10.3389/fimmu.2022.853954.

INCT. Manual de procedimentos para herbários. Editora universitária UFPE: Recife, 2013.

KAUR, C. P et al. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis. 2018 May;19(5):262-271. DOI: 10.1111/1751-2980.12595.

KIELISZEK, M et al. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules. 2021 Mar 25;26(7):1858. DOI: 10.3390/molecules26071858.

KORCARI, D et al. Exploration of Lactiplantibacillus fabifermentans and Furfurilactobacillus rossiae as potential cocoa fermentation starters. J Appl Microbiol. 2022 Sep;133(3):1769-1780. DOI: 10.1111/jam.15687.

LANE, D. J et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991 Jan;173(2):697-703. DOI: 10.1128/jb.173.2.697-703.

MEDEIROS, G. K. V et al. Cereus jamacaru DC. (mandacaru) fruit as a source of lactic acid bacteria with in vitro probiotic-related characteristics and its protective effects on Pediococcus pentosaceus during lyophilization and refrigeration storage. Int J Food Microbiol. 2024 Jun 2;417:110695. DOI: 10.1016/j.ijfoodmicro.2024.110695.

NIETO-ARRIBAS, P et al. Enterococcus populations in artisanal Manchego cheese: biodiversity, technological and safety aspects. Food Microbiol. 2011 Aug;28(5):891-9. DOI: 10.1016/j.fm.2010.12.005.

NCCLS. Metodologia dos Testes de Sensibilidade a Agentes Antimicrobianos por Diluição para Bactéria de Crescimento Aeróbico: Norma Aprovada. 6ed. Vol. 23 No. 2, 2003.

OLIVEIRA, M. N et al. Aspectos tecnológicos de alimentos funcionais contendo probióticos. Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences, vol. 38, n. 1, jan./mar., 2002.

PALMELA, C et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018 Mar;67(3):574-587. DOI: 10.1136/gutjnl-2017-314903.

PEREIRA, Z, C et al. Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential, Food Research International, v. 166, 2023. DOI: https://doi.org/10.1016/j.foodres.2023.112626.

PLA, M. L et al. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods. Biomed Res Int. 2015;2015:365025. DOI: 10.1155/2015/365025.

RAIZEL, R et al. Efeitos do consumo de probióticos, prebióticos e simbióticos para o organismo humano. Revista Ciência & Saúde, Porto Alegre, v. 4, n. 2, p. 66-74, jul./dez. 2011.

RAO, O et al. Probiotics and Prebiotics in Human Nutrition and Health. IntechOpen: 2016, 394p. DOI: 10.5772/63141.

REIS, L. C. R et al. Stability of functional compounds and antioxidant activity of fresh and pasteurized orange passion fruit (Passiflora caerulea) during cold storage, Food Research International, v.106, 2018, p. 481-486. DOI: https://doi.org/10.1016/j.foodres.2018.01.019.

REUBEN, R. C et al. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 2019,nov 12;19(1):253. DOI: 10.1186/s12866-019-1626-0.

RICKE, S. C. The gastrointestinal tract ecology of Salmonella enteritidis colonization in molting hens. Poult Sci. 2003 Jun;82(6):1003-7. DOI: 10.1093/ps/82.6.1003.

RODRIGUEZ, H.; CURIEL, J. A.; LANDETE, J. M.; RIVAS, B.; FELIPE, F. L.; GÓMEZ-CORDOVÉS, C.; MANCHEÑO, J. M.; MUÑOZ, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol., v. 132, p. 79-90, 2009.

SATO, A. S. T et al. Isolation and Genetic Identification of Endophytic Lactic Acid Bacteria From the Amazonian Açai Fruits: Probiotics Features of Selected Strains and Their Potential to Inhibit Pathogens. Front Microbiol. 2021 Jan 8;11: 610524. DOI: 10.3389/fmicb.2020.610524.

SHAHVEH, M et al. Molecular Characterization of Enterococcus faecalis and Enterococcus faecium Isolated from a Meat Source in Shahrekord Local Markets, Iran. Arch Razi Inst. 2023 Aug 31;78(4):1387-1396. DOI: 10.32592/ARI.2023.78.4.1387.

SIONEK, B et al. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023, 11(7),1714. DOI: https://doi.org/10.3390/microorganisms11071714.

SILVA, M. R et al. Caracterização química de frutos nativos do cerrado. Ciência Rural, Santa Maria, v.38, n.6, p.1790- 1793, 2008.

TENDENEDZAI, J. T. Enterococcus spp. Cell-Free Extract: An Abiotic Route for Synthesis of Selenium Nanoparticles (SeNPs), Their Characterisation and Inhibition of Escherichia coli. Nanomaterials (Basel). 2022 Feb 16;12(4):658. DOI: 10.3390/nano12040658.

TRINDADE, D. P. A et al. Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential, Food Bioscience, v. 48, 2022, 101739.

VEETTIL, V. N; CHITRA, A. V. Optimization of bacteriocin production by Lactobacillus plantarum using Response Surface Methodology. Cell Mol Biol (Noisy-le-grand). 2022 Jun 30;68(6):105-110. DOI: 10.14715/cmb/2022.68.6.17.

VIEIRA, A. D. S et al. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Res Int. 2017 Jul;97:356-363. DOI: 10.1016/j.foodres.2017.04.026.

XU, X et al. Characterization of diversity and probiotic efficiency of the autochthonous lactic acid bacteria in the fermentation of selected raw fruit and vegetable juices. Front Microbiol. 2018;9:e--2539.

WICAKSONO, W. A et al. Impact of Cultivation and Origin on the Fruit Microbiome of Apples and Blueberries and Implications for the Exposome. Microb Ecol. 2023 Aug;86(2):973-984. DOI: 10.1007/s00248-022-02157-8.

YANG, J et al. Characterization of Lactic Acid Bacteria Isolated from Banana and Its Application in Silage Fermentation of Defective Banana. Microorganisms. 2022 Jun 9;10(6):1185. DOI: 10.3390/microorganisms10061185.

Published

2025-09-29

How to Cite

de Souza, B. P., dos Santos, B. P., do Nascimento, I. C., dos Santos, T. T., Tulini, F. L., & de Sousa, A. O. (2025). PROBIOTIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATED FROM WILD PASSION FRUIT (PASSIFLORA CINCINNATA MAST.). Revista De Geopolítica, 16(4), e731. https://doi.org/10.56238/revgeov16n4-088