DISTRIBUCIÓN GEOGRÁFICA Y MODELADO ECOLÓGICO DE INFECCIONES POR TRYPANOSOMA (TRYPANOSOMATIDAE) EN RANAS SUDAMERICANAS
DOI:
https://doi.org/10.56238/revgeov16n5-291Palabras clave:
Modelado del Nicho Ecológico, MaxEnt, Parásitos Anuros, Idoneidad ClimáticaResumen
Los tripanosomátidos del género Trypanosoma incluyen especies ampliamente distribuidas en vertebrados, pero su presencia en anuros neotropicales aún es poco explorada. En este estudio, realizamos una revisión sistemática de la literatura disponible sobre infecciones por Trypanosoma en anuros de Sudamérica y recopilamos registros georreferenciados para caracterizar su distribución conocida. Además, empleamos el modelado de nicho ecológico (MaxEnt) para estimar áreas de aptitud climática favorables para la presencia del parásito en el continente. Nuestros resultados muestran que los registros se concentran principalmente en Brasil, abarcando alrededor de 30 especies de anuros pertenecientes a múltiples familias, mientras que extensas áreas de Sudamérica permanecen sin muestrear. El modelo mostró un rendimiento satisfactorio (AUC = 0,75) e indicó que las regiones del Cerrado y las zonas de transición con la Amazonia y el Pantanal presentan una mayor probabilidad climática de presencia, influenciada principalmente por la temperatura media anual, la precipitación anual y la estacionalidad de las precipitaciones. La superposición entre áreas de alta aptitud y puntos de presencia refuerza el papel de las variables climáticas como predictores de la distribución del parásito. Nuestros resultados revelan una diversidad aún subestimada de Trypanosoma en anfibios neotropicales y resaltan la necesidad de ampliar los esfuerzos de muestreo e incorporar enfoques integrados para la caracterización taxonómica y ecológica de estos parásitos.
Descargas
Referencias
ABDELAAL, M.; FOIS, M.; FENU, G.; BACCHETTA, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crep. in Egypt. Ecological Informatics, v. 50, p. 68-75, 2019. https://doi.org/10.1016/j.ecoinf.2019.01.003
ALMEIDA, P. H. A. Detecção molecular de protozoários em mamíferos silvestres oriundos da Mata Atlântica – Bahia (2020). Tese (Doutorado) – Universidade Federal da Bahia, 2020.
BEEBEE, T. J.; GRIFFITHS, R. A. The amphibian decline crisis: a watershed for conservation biology? Biological Conservation, v. 125, p. 271-285, 2005. https://doi.org/10.1016/j.biocon.2005.04.009
BERNAL, X. E.; PINTO, C. M. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. International Journal for Parasitology: Parasites and Wildlife, v. 5, n. 1, p. 40-47, 2016.
CLARK, T. B. Comparative Morphology of Four Genera of Trypanosomatidae. The Journal of Protozoology, v. 6, n. 3, p. 227-232, 1959.
COELHO, T. A.; SOUZA, D. C. D.; KAWASHITA-RIBEIRO, R. A.; CORREA, L. L. First record of Trypanosoma sp. (Kinetoplastea: Trypanosomatidae) parasiting Rhinella major in the Brazilian Amazon. Anais da Academia Brasileira de Ciências, v. 93, n. 2, e20190467, 2021.
COSTA, G. C.; SCHLUPP, I. Biogeography of the Amazon molly: ecological niche and range limits of an asexual hybrid species. Global Ecology and Biogeography, v. 19, p. 442-451, 2010. https://doi.org/10.1111/j.1466-8238.2010.00546.x
ELITH, J.; GRAHAM, C. H.; ANDERSON, R. P. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, v. 29, p. 129-151, 2006. https://doi.org/10.1111/j.2006.0906-7590.04596.x
ELLWANGER, J. H.; CHIES, J. A. B. Zoonotic spillover: Understanding basic aspects for better prevention. Genetics and Molecular Biology, v. 44, n. 1 (Suppl 1), e20200355, 2021. https://doi.org/10.1590/1678-4685-GMB-2020-0355
FAO. Food and Agriculture Organization of the United Nations. 2011. Disponível em: http://faostat3.fao.org/browse/area/*/E. Acesso em: dez. 2025.
FERREIRA, S. J. I.; DA COSTA, A. P.; RAMIREZ, D.; ROLDAN, J. A.; SARAIVA, D.; DA S. FOUNIER, G. F.; … MARCILI, A. Anuran trypanosomes: phylogenetic evidence for new clades in Brazil. Systematic Parasitology, v. 91, n. 1, p. 63-70, 2015.
FOIS, M.; CUENA-LOMBRANA, A.; FENU, G.; BACCHETTA, G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecological Modelling, v. 385, p. 124-132, 2018. https://doi.org/10.1016/j.ecolmodel.2018.07.018
GARREAUD, R. D.; VUILLE, M.; COMPAGNUCCI, R.; MARENGO, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 281, p. 180-195, 2009. https://doi.org/10.1016/j.palaeo.2007.10.032
HADDAD, C. F. B.; TOLEDO, L. F.; PRADO, C. A. Anfíbios da Mata Atlântica: guia dos anfíbios anuros da Mata Atlântica. São Paulo: Editora Neotropica, 2008.
HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, v. 25, p. 1965-1978, 2005. https://doi.org/10.1002/joc.1276
HIJMANS, R. J.; PHILLIPS, J.; LEATHWICK, J. E. Dismo: species distribution modeling. R package, v. 1, p. 1-4, 2017. Disponível em: https://cran.r-project.org/web/packages/dismo/dismo.pdf. Acesso em: dez. 2025.
HOLT, R. D. On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research, v. 5, p. 159-178, 2003.
HOLT, R. D.; KEITT, T. H. Species’ borders: a unifying theme in ecology. Oikos, v. 108, p. 3-6, 2005. https://doi.org/10.1111/j.0030-1299.2005.13145.x
HONIGBERG, B. M. Evolutionary and systematic relationships in the flagellate order Trichomonadida Kirby. Journal of Protozoology, v. 10, p. 20-63, 1963. https://doi.org/10.1111/j.1550-7408.1963.tb01635.x
HYNE, R. V.; WILSON, S.; BYRNE, M. Frogs as bioindicators of chemical usage and farm practices in an irrigated agricultural area. Final Report to Land & Water Australia, 2009.
KAUFER, A.; ELLIS, J.; STARK, D.; BARRATT, J. The evolution of trypanosomatid taxonomy. Parasites & Vectors, v. 10, p. 287-1-17, 2017. https://doi.org/10.1186/s13071-017-2204-7
LEAL, D. D.; O’DWYER, L. H.; RIBEIRO, V. C.; SILVA, R. J.; FERREIRA, V. L.; RODRIGUES, R. B. Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in anurans of the São Paulo and Mato Grosso do Sul States—Brazil. Anais da Academia Brasileira de Ciências, v. 81, p. 199-206, 2009.
LEMOS, M.; MORAIS, D. H.; CARVALHO, V. T.; D’AGOSTO, M. First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs. Journal of Parasitology, v. 94, n. 1, p. 148-151, 2008.
LUKEŠ, J.; BUTENKO, A.; HASHIMI, H.; MASLOV, D. A.; VOTÝPKA, J.; YURCHENKO, Y. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends in Parasitology, v. 34, n. 6, p. 466-480, 2018.
MEGÍA-PALMA, R.; SÁNCHEZ-MONTES, G.; NETHERLANDS, E.; PALOMAR, G.; MARTÍNEZ-SOLANO, Í. High prevalence of Trypanosoma infection in Iberian green frogs (Pelophylax perezi): negative relationship with two indices of body condition. Basic and Applied Herpetology, v. 38, p. 91-110, 2024.
OLIVAL, K. J.; HOSSEINI, P. R.; ZAMBRANA-TORRELIO, C.; ROSS, N.; BOGICH, T. L.; DASZAK, P. Host and viral traits predict zoonotic spillover from mammals. Nature, v. 546, p. 646-650, 2017. https://doi.org/10.1038/nature22975
ORTIZ-BAEZ, A. S.; COUSINS, K.; EDEN, J. S.; CHANG, W. S.; HARVEY, E.; PETTERSSON, J. H. O.; … HOLMES, E. C. Meta-transcriptomic identification of Trypanosoma spp. in Australian wildlife. Parasites & Vectors, v. 13, n. 1, p. 447, 2020.
PETERSON, A. T. Predicting species’ geographic distributions based on ecological niche modeling. The Condor, v. 103, p. 599-605, 2001. https://doi.org/10.1650/0010-5422(2001)103[0599:PSGDBO]2.0.CO;2
PETERSON, A. T.; BALL, L. G.; COHOON, K. P. Predicting distributions of Mexican birds using ecological niche modelling methods. Ibis, v. 144, p. e27-e32, 2002. https://doi.org/10.1046/j.0019-1019.2001.00031.x
PHILLIPS, S. J. Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. Ecography, v. 31, p. 272-278, 2008. https://doi.org/10.1111/j.0906-7590.2008.5378.x
PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, v. 190, p. 231-259, 2006. https://doi.org/10.1016/j.ecolmodel.2005.03.026
PHILLIPS, S. J.; ELITH, J. POC plots: calibrating species distribution models with presence-only data. Ecology, v. 91, p. 2476-2484, 2010. https://doi.org/10.1890/09-0760.1
PINHO, S. R.; RODRIGUEZ-MALAGA, S.; LOZANO-OSORIO, R.; CORREA, F. S.; SILVA, I. B.; SANTOS-COSTA, M. C. Effects of the habitat on anuran blood parasites in the Eastern Brazilian Amazon. Anais da Academia Brasileira de Ciências, v. 93 (Suppl 4), e20201703, 2021.
R CORE TEAM. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2020. Disponível em: https://www.r-project.org/. Acesso em: dez. 2025.
REBOITA, M. S.; GAN, M. A.; ROCHA, R. P. D.; AMBRIZZI, T. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, v. 25, p. 185-204, 2010. https://doi.org/10.1590/S0102-77862010
RODRIGUES, A. F. S. F.; MORAIS, D. H.; CARVALHO, V. T.; D’AGOSTO, M.; LEMOS, M. Morphological and morphometric characterization of trypanosomes in Leptodactylus lineatus and Osteocephalus sp. Revista Brasileira de Zoociências, v. 20, p. 1-10, 2019.
SANTOS, J. C.; TARVIN, R. D.; O’CONNELL, L. A.; BLACKBURN, D. C.; COLOMA, L. A. Diversity within diversity: parasite species richness in poison frogs assessed by transcriptomics. Molecular Phylogenetics and Evolution, v. 125, p. 40-50, 2018.
SEGALLA, M.; BERNECK, B.; CANEDO, C. et al. List of Brazilian Amphibians. Herpetologia Brasileira, v. 10, p. 121-216, 2021. https://doi.org/10.5281/zenodo.4716176
SILVANO, D. L.; SEGALLA, M. V. Conservação de anfíbios no Brasil. Megadiversidade, v. 1, p. 79-86, 2005.
SPODAREVA, V. V.; GRYBCHUK-IEREMENKO, A.; LOSEV, A.; VOTÝPKA, J.; LUKEŠ, J.; YURCHENKO, V.; KOSTYGOV, A. Y. Diversity and evolution of anuran trypanosomes: insights from European species. Parasites & Vectors, v. 11, p. 447, 2018. https://doi.org/10.1186/s13071-018-3023-1
STUART, S. N.; CHANSON, J. S.; COX, N. A.; YOUNG, B. E.; RODRIGUES, A. S. L.; FISCHMAN, D. L.; WALLER, R. W. Status and trends of amphibian declines and extinctions worldwide. Science, v. 306, p. 1783-1786, 2004. https://doi.org/10.1126/science.1103538
WELLS, K.; CLARK, N. J. Host specificity in variable environments. Trends in Parasitology, v. 35, n. 6, p. 452-465, 2019. https://doi.org/10.1016/j.pt.2019.04.001
WHILES, M. R.; LIPS, K. R.; PRINGLE, C. M. et al. The effects of amphibian population declines on the structure of Neotropical stream ecosystems. Frontiers in Ecology and the Environment, v. 4, p. 27-34, 2006. https://doi.org/10.1890/1540-9295(2006)004[0027:TEOAPD]2.0.CO;2
WOO, P. T.; BOGART, J. P. Trypanosoma spp. (Protozoa: Kinetoplastida) in Hylidae (Anura) from eastern North America: distribution and prevalence. Canadian Journal of Zoology, v. 62, p. 820-824, 1984.