USE OF DOLOMITE AS A PHOSPHATE ADSORBENT IN WASTEWATER: COMPARATIVE EVALUATION BETWEEN NATURAL AND PURIFIED SAMPLES

Authors

  • Ghessyca Aparecida do Bonfim
  • Andréia Cristina Furtado
  • Victor Vicentin Bentes

DOI:

https://doi.org/10.56238/revgeov16n5-047

Keywords:

Adsorption, Phosphorus, Structural Characterization, Wastewater Treatment, Nutrient Removal, Sustainability, Circular Economy

Abstract

Eutrophication of water bodies, intensified by excess phosphorus from domestic effluents and agro-industrial activities, constitutes one of the greatest environmental challenges today. In this context, the search for low-cost and widely available adsorbent materials has been considered strategic to mitigate diffuse pollution. Dolomite, a carbonate mineral abundant in Brazil, has potential for phosphorus removal, but its efficiency depends on structural conditions and the presence of impurities. Therefore, this study comparatively evaluated the phosphorus adsorption efficiency of natural dolomite (ND) and purified dolomite (PD), integrating performance analyses in adsorption tests and structural and surface characterizations by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The calibration curve established for phosphorus determination showed linear behavior in the range of 1 to 25 mg L⁻¹. The limits of detection (LOD = 0.178 mg·L⁻¹) and quantification (LOQ = 0.593 mg·L⁻¹) confirmed the technique's sensitivity, allowing the monitoring of subtle variations after adsorption. In comparative tests, raw dolomite showed removals between 24.3% and 36.7%, with a tendency for efficiency to decrease at higher concentrations. Purified dolomite consistently performed better, with removals between 89.9% and 95.6%, regardless of the initial phosphate concentration. This difference was attributed to the elimination of impurities during purification, which resulted in greater surface area, porosity, and availability of Ca²⁺ and Mg²⁺ active sites. Characterization analyses reinforced the test results. FTIR confirmed the presence of typical carbonate bands (CO₃²⁻) in both samples, in addition to the emergence of new bands related to phosphate groups (PO₄³⁻) after the adsorption process, more intense in the purified dolomite. SEM images revealed that the DN had irregular, heterogeneous particles with fissures, while the DP presented homogeneous, compact particles with greater porosity. The EDS results confirmed the characteristic elemental composition of dolomite and, decisively, the presence of phosphorus only in the DP saturated at 40 mg L⁻¹, direct evidence of greater phosphate anion fixation efficiency. Comparison with the literature showed that the results of this study are consistent with studies reporting low efficiencies in untreated dolomite and removal rates greater than 90% in purified or modified materials. In this sense, purified dolomite demonstrated performance comparable to more expensive synthetic adsorbents, such as modified zeolites and metal oxides, standing out for its widespread availability and economic viability in Brazil. Thus, purified dolomite represents a promising, sustainable, and low-cost alternative for phosphorus removal from aqueous solutions, with potential application in decentralized sanitation systems.

Downloads

Download data is not yet available.

References

ALMEIDA, M. R.; SOUZA, F. J.; CARVALHO, R. A. Application of UV-Vis spectrophotometry in phosphorus monitoring of natural and wastewaters. Environmental Monitoring and Assessment, Dordrecht, v. 194, p. 1-12, jan. 2022.

APHA – AMERICAN PUBLIC HEALTH ASSOCIATION. Standard Methods for the Examination of Water and Wastewater. 23. ed. Washington, DC, jan. 2017.

BONFIM, G. B. Incorporação de dolomita em hidrogel superabsorvente para retenção de fósforo em sistemas agrícolas. 2023. Trabalho de Conclusão de Curso – UNILA, Foz do Iguaçu.

CHANG, R. et al. Infrared spectra of carbonate minerals. American Mineralogist, v. 83, p. 1120–1130, 1998.

COSTA, R. H. R.; MENDONÇA, M. C. S.; SILVA, A. P. Limites de detecção e quantificação em métodos colorimétricos aplicados à determinação de fósforo em águas. Revista Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 21, n. 3, p. 543-552, jun. 2016.

DE MELLO, R. L.; PIMENTEL, P. M. Calcium–magnesium interactions in dolomitic surfaces: implications for phosphate adsorption. Applied Geochemistry, Amsterdam, v. 134, p. 105123, abr. 2021.

EL ASRI, O.; BENAABIDATE, L.; EL KHADIR, L. Removal of phosphate from treated wastewater using carbonates: adsorption study by UV-Vis spectrophotometry. Journal of Environmental Chemical Engineering, Amsterdam, v. 9, n. 4, p. 105-112, jul. 2021.

FERREIRA, L. C. Caracterização de minerais carbonáticos e avaliação de sua aplicação na adsorção de fosfato. 2017. 142 f. Dissertação (Mestrado em Química) – Universidade Federal de Minas Gerais, Belo Horizonte, 2017a.

FERREIRA, L. M. S. Avaliação da dolomita como material adsorvente na remoção de fósforo em águas residuárias. Revista Matéria, Rio de Janeiro, v. 22, n. 2, p. 1-10, abr. 2017b.

GAMA, M. A. Desenvolvimento de método colorimétrico para determinação de fósforo em águas naturais. 2019. Dissertação (Mestrado em Química) – Universidade Federal do Ceará, Fortaleza, 2019.

GOLDSTEIN, J. I. et al. Scanning Electron Microscopy and X-ray Microanalysis. 4. ed. New York: Springer, 2017.

GUIMARÃES, R. S.; LIMA NETO, J. M. Métodos colorimétricos aplicados ao monitoramento ambiental de fósforo em sistemas descentralizados. Revista Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 28, n. 3, p. 375-384, mar. 2023.

HANNA, K.; CHAZAL, P. M.; CHENEVOT, B. Mechanisms of phosphate interaction with calcium and magnesium ions in aqueous systems. Chemosphere, Oxford, v. 71, n. 11, p. 2089-2096, nov. 2008.

KARACA, S.; GURSES, A.; AÇIKYILDIZ, M.; EJDER, M. Adsorptive removal of phosphate from aqueous solutions using raw and activated dolomite. Journal of Hazardous Materials, Amsterdam, v. 128, n. 2, p. 273-279, mar. 2006.

KLEIN, T.; AGNE, S. A. Aspectos ambientais e de saúde pública relacionados ao uso de coagulantes na remoção de fósforo. Química Nova, São Paulo, v. 35, n. 2, p. 227-234, mar. 2012.

KOVACEVIC, D. et al. Phosphate adsorption onto thermally modified dolomite: mechanisms and modeling. Chemical Engineering Journal, Lausanne, v. 358, p. 1229-1240, jan. 2019.

MAPA – Ministério da Agricultura, Pecuária e Abastecimento. Manual de métodos analíticos oficiais para fertilizantes minerais, orgânicos, organominerais e corretivos. Brasília: MAPA, 2014.

MARONEZE, M. M.; GOMES, R. C.; SANTOS, M. A. Processos avançados de tratamento de águas e efluentes: estado da arte e tendências. Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 19, n. 3, p. 247-258, set. 2014.

MOLINARI, R. et al. Phosphate removal from wastewaters by adsorption on dolomite and hydroxyapatite. Desalination, Amsterdam, v. 217, n. 1-3, p. 276-287, dez. 2007.

MRAZ, R. et al. Enhanced phosphate removal by ultrasound-modified dolomite: structural characterization and adsorption mechanisms. Science of the Total Environment, Amsterdam, v. 870, p. 161-171, jan. 2023.

NUGROHO, R. A.; TANAKA, S.; FUJII, T. Diffusion-driven phosphate adsorption on carbonate minerals: role of initial concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Amsterdam, v. 452, p. 143-150, jan. 2014.

OLIVEIRA, L. P.; SANTOS, A. C.; SILVA, D. M. Avaliação de fósforo em águas naturais no Brasil: métodos colorimétricos e aplicações ambientais. Revista Brasileira de Recursos Hídricos, Porto Alegre, v. 26, n. 1, p. 1-13, fev. 2021.

PEREIRA, M. L.; SILVA, R. A.; SOUZA, V. H.; OLIVEIRA, F. G. Potencial de uso de dolomita brasileira como adsorvente de fósforo em águas residuárias. Revista Brasileira de Recursos Hídricos, Porto Alegre, v. 25, e15, p. 1-12, 2020.

PINTO-COELHO, R. M.; FONSECA, R.; BECKER, V. Eutrofização em ecossistemas aquáticos tropicais: causas, consequências e perspectivas de manejo. Oecologia Australis, Rio de Janeiro, v. 23, n. 4, p. 753-772, dez. 2019.

ROQUES, H.; NOUAILHAS, D.; CABROL, R. Phosphate removal by precipitation with calcium: application to waters and wastewaters. Water Research, Oxford, v. 25, n. 8, p. 979-986, 1991.

SALAMEH, Y. et al. Surface properties of dolomite and implications for phosphate adsorption. Applied Surface Science, v. 357, p. 1185–1194, 2015.

SAMUDIO LEGAL, D. Adsorção de fósforo em dolomitas modificadas: estudo experimental. 2018. Dissertação (Mestrado em Engenharia Ambiental) – Universidad Nacional de Colombia, Medellín, 2018.

SAUFFI, M. S. et al. Morphological features of natural dolomite for pollutant adsorption. Minerals Engineering, v. 146, 2020.

SKOOG, D. A.; WEST, D. M.; HOLLER, F. J.; CROUCH, S. R. Fundamentals of Analytical Chemistry. 9. ed. Belmont: Brooks/Cole, 2018.

SMITH, V. H.; SCHINDLER, D. W. Eutrophication science: where do we go from here? Trends in Ecology & Evolution, Amsterdam, v. 24, n. 4, p. 201-207, abr. 2009.

SOTIRI, R. F.; ALVES, M. C.; GONÇALVES, A. P. Monitoramento de fósforo em reservatórios brasileiros: desafios para o enquadramento legal. Revista Engenharia Sanitária e Ambiental, Rio de Janeiro, v. 27, n. 5, p. 765-778, out. 2022.

WITHERS, P. J. A.; HAYGARTH, P. M.; SHARPLEY, A. N. Environmental significance of phosphorus monitoring: applications of spectrophotometry. Environmental Science & Technology, Washington, v. 52, n. 3, p. 1324-1335, fev. 2018.

XU, Y.; LI, J.; WANG, L. Adsorption of phosphate on dolomite and modified carbonates: kinetics and isotherms. Chemical Engineering Journal, Amsterdam, v. 237, p. 403-410, jan. 2014.

YUAN, Z.; CHEN, H.; WANG, S. Phosphate adsorption by carbonates: comparison of natural and treated minerals. Journal of Environmental Sciences, Beijing, v. 32, p. 120-128, mar. 2015.

ZHANG, T. et al. Phosphate removal from aqueous solution by natural and modified carbonate minerals: performance and mechanisms. Journal of Environmental Management, London, v. 255, p. 109-121, fev. 2020.

Published

2025-10-20

How to Cite

do Bonfim, G. A., Furtado, A. C., & Bentes, V. V. (2025). USE OF DOLOMITE AS A PHOSPHATE ADSORBENT IN WASTEWATER: COMPARATIVE EVALUATION BETWEEN NATURAL AND PURIFIED SAMPLES. Revista De Geopolítica, 16(5), e808 . https://doi.org/10.56238/revgeov16n5-047